Malnutrition: what is it and why does it matter?

Niamh Rice

ISPEN
Learning Objectives

1. What is malnutrition?
2. Malnutrition and disease
3. Effects of malnutrition
4. Impact of health outcomes
5. Economic impact
6. Nutritional support - who benefits?
WHAT IS MALNUTRITION?
It all started out so well.......

- “In the face of illness, thin people do badly”
 – Hippocrates

- “thousands of patients are annually starved in the midst of plenty from want of attention to the ways which make it possible for them to take food. I say to the nurse, have a rule of thought about your patient's diet”

Florence Nightingale, 1859
Unfortunately, we lost the advantage....

“Clinical nutrition has become the ‘cinderella of modern medicine’….not least because of a failure of its practitioners to define it in a way that engages doctors and causes them to take it seriously”

Professor Simon Allison,
Chairman of ESPEN 2002
The problem with definitions..

“Malnutrition is a state of nutrition in which a deficiency (or excess) of energy, protein and micronutrients causes measurable adverse effects on tissue/body form (body shape, size and composition) and function, and clinical outcome.”

Marinos Elia
Defining malnutrition syndromes (according to aetiology)

- **Starvation-related malnutrition**
 - *Eg. Anorexia nervosa*

- **Acute Disease-related malnutrition**
 - *Eg. sepsis, burns, trauma or closed head injury.*

- **Chronic disease-related malnutrition**
 - *Eg rheumatoid arthritis, organ failure, pancreatic cancer, chronic diseases in older patients, sarcopenic obesity.*
...and a few more malnutrition syndromes

- **Sarcopenia**
 - Loss of muscle mass and function

- **Sarcopenic obesity**
 - Above in presence of obesity ie “fat frail”

- **Cachexia**
 - Severe loss of weight, fat and muscle and increased protein catabolism due to underlying disease

- **Pre-cachexia**
 - Underlying chronic disease weight loss of <5%, chronic systemic inflammatory response and anorexia.
Why it helps to differentiate

Starvation related malnutrition

Disease related malnutrition
Decay of body weight (% body weight) over time in days (0-70) for different types of starvation.

- **Catabolic** (red line): Rapid weight loss due to protein breakdown.
- **Complete starvation** (green line): Steady weight loss primarily due to fat breakdown.
- **Partial starvation** (yellow line): Moderate weight loss.

Reproduced from presentation given by Professor M Stroud, 2009.
NICE criteria (2006)

- a body mass index (BMI) of \(<18.5\) kg/m\(^2\)

- unintentional weight loss \(>10\%\) within the last 3–6 months

- a BMI of \(<20\) kg/m\(^2\) and unintentional weight loss \(>5\%\) within the last 3–6 months
Those at risk:

those who have:

- eaten little or nothing for more than 5 days and/or are likely to eat little or nothing for 5 days or longer

- a poor absorptive capacity and/or high nutrient losses and/or increased nutritional needs from causes such as catabolism
EFFECTS AND CONSEQUENCES OF MALNUTRITION
Effects of Undernutrition

- Ventilation - loss of muscle & hypoxic responses
- Immunity – Increased risk of infection
- Impaired gut integrity and immunity
- Decreased Cardiac output
- Renal function - loss of ability to excrete Na & H2O
- Hypothermia
- Impaired wound healing
- Loss of strength
- Psychology – depression & apathy
- Liver fatty change, functional decline, necrosis, fibrosis
- Hypoventilation – loss of muscle & hypoxic responses
- Anorexia?
- Micronutrient deficiency
- Loss of strength
- Liver fatty change, functional decline, necrosis, fibrosis

Reproduced from presentation given by Professor M Stroud, 2009
Starvation causes reductive adaptation/conservation.

Reduced food intake

- Reduced Mass
- Changed body composition

- Reduced work, increased efficiency
- Changed metabolism

Metabolically stable BUT loss of reserve and functional capacity ‘Marasmus’
REDUCED FOOD INTAKE

- Reduced Mass
- Reduced work, increased efficiency
- Changed body composition

Marasmus

Infection, trauma, small bowel overgrowth, specific deficiency, abnormal losses, excessive intake, unbalanced intake

Loss of homeostasis
Complications after abdominal surgery for malignant disease
Malnourished patients have 2 to 3 times more complications

Frequency of complications in at risk vs not at-risk patients

EuroOOPS Study: \(n = 5051 \), mean age 59.8 years (±0.3 SEM), 12 countries, 26 hospital departments. \(P<0.001 \).

...more frequent hospital admissions

Malnourished patients experience a significantly higher total re-admission rate than well-nourished patients

<table>
<thead>
<tr>
<th>Nutritional Status</th>
<th>Re-admission rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malnutrition</td>
<td>30.7%</td>
</tr>
<tr>
<td>Normal nutrition</td>
<td>20.7%</td>
</tr>
<tr>
<td>Over nutrition</td>
<td>17.7%</td>
</tr>
</tbody>
</table>

\[n = 400, \text{mean age} 57.3\text{years (±17.5)}, \text{P<0.05} \]

Use more healthcare resource.

No. of visits or hospital admissions per subject (>65y) per year (Elia et al 2006)

<table>
<thead>
<tr>
<th></th>
<th>No MN*</th>
<th>MN</th>
<th>% increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP visits</td>
<td>4.31</td>
<td>7.10</td>
<td>+65%</td>
</tr>
<tr>
<td>Hospital OP visits</td>
<td>1.02</td>
<td>1.36</td>
<td>+33%</td>
</tr>
<tr>
<td>Hospital admissions</td>
<td>0.28</td>
<td>0.50</td>
<td>+80%</td>
</tr>
</tbody>
</table>

*Low risk according to ‘MUST’

** Length of hospital stay increased by > 30% - 70% in malnourished and less likely to be discharged home.
...and are more likely to die

EuroOOPS Study: $n = 5051$, mean age 59.8 years (± 0.3 SEM), 12 countries, 26 hospital departments. Follow-up period of 28 days, $P<0.001$.

Malnutrition is associated with increased mortality in older hospital patients

Mortality according to malnutrition risk category

Patients at risk of malnutrition (‘MUST’ categories medium and high). P = 0.01.

Hospital costs for malnourished patients
% increase above normally nourished

* A review in the USA (1996) suggested 35-75% increase in costs
Hospital costs for malnourished patients in UK

% increase above normally nourished

* A mean increase of 40%

Stratton et al 2004

(n= 138) (n= 150) (n= 194) (n= 380)
Costs of malnutrition (and associated disease)

• Affects 20 million in the EU at an estimated annual cost of €120billion
 Conference held in EU Parliament, Tuesday 9 November 2010

• 3 million in the UK, at an estimated cost of £13billion stg
 BAPEN 2009 Report

• 140,000 in ROI, at an estimated cost of €1.5billion
Estimated cost of DRM in Ireland in 2007

- Health care
 - Hospital inpatients (92%) & outpatients (8%)
 - Primary care
- Social care
 - Adult care homes (88%) & home care (12%)
 - Other

Nutritional support products, adults:
(Tube feeds, ONS, other €32 million (community)
The malnutrition carousel

1 in 4 patients admitted to hospital malnourished

Home
More GP visits
More hospital admissions

Up to 70% of patients discharged from hospital weigh less than on admission

Hospital
More deaths
Longer length of stay
More support post discharge
More deaths post discharge
Inpatients with disease-related malnutrition (2007, USING HIPE DATA)

- Total number of bed days – all patients: 292,278,4
- No. of bed days used by malnourished patients: 113,988,5
- Additional bed days used by malnourished patients due to longer LOS: 263,050
Ideally, nutritional support should:

• Improve general status
 – Immune function
 – Wound healing
 – Ventilation
 – Strength
 – Mobility
 – Psychology

• Improve outcome

Does it?
EVIDENCE BASE
The Problems in Nutritional research

- Trials use different
 - Indications for intervention AND EXCLUSION
 - Levels of feeding
 - Controls
 - Starting times
 - Routes of support
 - Duration of support
 - Outcome measures
The Evidence

Wanted – volunteers for randomized, placebo controlled trial

Patients with an undoubted need for nutrition support cannot be randomized
Evidence for oral nutrition supplements and tube Feeds – early studies

- Supplemented group ate more hospital food
- Supplemented group mortality 8.6 % vs 18.6% in controls

RCT overnight NG feeding in underweight females with fractured NOF. Bastow et al. BMJ 1983

- ONS group mobilised at 16 days with 8% mortality vs controls at 23 days with 22% mortality
- (Normally nourished mobile at 10 days with 5% mortality.)
Impact of nutritional supplementation on length of stay

- Reduced length of hospital stay (LOS) found in patients who received ONS compared with control patients
 - average reductions shown in a meta-analysis ranged from 2 days (in surgical patients) to 33 days (in orthopaedic patients)¹

- Malnourished patients in a stroke rehabilitation centre receiving ONS showed improved recovery
 - higher level of functional independence was achieved and more of them were able to go home rather than to institutional care²

Impact of nutritional intervention on readmission rates

- Significantly lower proportion of acutely ill older people readmitted to hospital at six months when supplemented with high protein oral nutrition supplement (complete) compared with placebo\(^1\)

NICE data: Length of stay – impact of supplementation

<table>
<thead>
<tr>
<th>Study</th>
<th>% Weight</th>
<th>Standardised Mean diff. (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{HARTSELL1997}</td>
<td>12.3</td>
<td>-0.32 (-0.83, 0.20)</td>
</tr>
<tr>
<td>{PEARL1998}</td>
<td>12.7</td>
<td>-0.49 (-0.78, -0.21)</td>
</tr>
<tr>
<td>{REISSMAN1995}</td>
<td>12.4</td>
<td>-3.00 (-3.45, -2.55)</td>
</tr>
<tr>
<td>Gist 2002</td>
<td>12.6</td>
<td>-0.03 (-0.39, 0.33)</td>
</tr>
<tr>
<td>Gocmen 2002</td>
<td>12.5</td>
<td>-2.54 (-2.93, -2.15)</td>
</tr>
<tr>
<td>Burrows1995</td>
<td>12.5</td>
<td>-0.38 (-0.78, 0.01)</td>
</tr>
<tr>
<td>Patolia2001</td>
<td>12.4</td>
<td>-2.08 (-2.53, -1.63)</td>
</tr>
<tr>
<td>Weinstein1993</td>
<td>12.6</td>
<td>0.11 (-0.25, 0.47)</td>
</tr>
<tr>
<td>Overall (95% CI)</td>
<td></td>
<td>-1.09 (-1.91, -0.27)</td>
</tr>
</tbody>
</table>
How much would it be worth spending per patient to prevent / treat malnutrition?

€5,357

- Any spend BELOW this figure which successfully treats DRM might be anticipated to deliver savings.

- Spend above this average may add value by improving quality of healthcare but would require justification

Estimated additional cost of MN (€750m) / number of people at medium/high risk of DRM (140,000)
HOW TO IDENTIFY ‘AT RISK’ PATIENTS
Malnutrition is not easy to spot until advanced...
And getting harder to identify as the population widens...

A patient of average BMI at the start of an illness would have to lose 25% of his/her body weight before reaching the cut off point for ‘low’ BMI.
Under-recognised, under-detected, under-treated.

About 1 in 4 patients in hospital 1-7

More than 1 in 3 patients in care homes 2;3;8-10

< 1 in 10 older persons living independently 11

1. Russell C, Elia M. Nutrition Screening Survey in the UK in 2008: Hospitals, Care Homes and Mental Health Units. 2009. Redditch, BAPEN.
BMI categories for chronic protein energy status

<table>
<thead>
<tr>
<th>BMI (kg/m²)</th>
<th>Weight category</th>
</tr>
</thead>
<tbody>
<tr>
<td><18.5</td>
<td>Underweight (probable PEM*)</td>
</tr>
<tr>
<td>18.5-20</td>
<td>Underweight (possible PEM*)</td>
</tr>
<tr>
<td>20-25</td>
<td>Desirable weight</td>
</tr>
<tr>
<td>25-30</td>
<td>Overweight</td>
</tr>
<tr>
<td>>30</td>
<td>Obese</td>
</tr>
</tbody>
</table>

* PEM = Protein-Energy Malnutrition
Unintentional weight loss over 3-6 months

- **<5% body weight**: normal intra-individual variation

- **5-10% body weight**: of concern
 - decrease in voluntary physical activity
 - increase in fatigue
 - less energetic

- **>10% body weight**: of significance
 - changes in muscle function
 - disturbances in thermoregulation
 - poor response or outcome to surgery and chemotherapy
Step 1
BMI score

<table>
<thead>
<tr>
<th>BMI kg/m²</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>>20 (>30 Obese)</td>
<td>0</td>
</tr>
<tr>
<td>18.5-20</td>
<td>1</td>
</tr>
<tr>
<td><18.5</td>
<td>2</td>
</tr>
</tbody>
</table>

Step 2
Weight loss score

<table>
<thead>
<tr>
<th>Unplanned weight loss in past 3-6 months %</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td><5</td>
<td>0</td>
</tr>
<tr>
<td>5-10</td>
<td>1</td>
</tr>
<tr>
<td>>10</td>
<td>2</td>
</tr>
</tbody>
</table>

Step 3
Acute disease effect score

If patient is acutely ill and there has been or is likely to be no nutritional intake for >5 days
Score 2

Step 4
Overall risk of malnutrition
Add scores together to calculate overall risk of malnutrition
Score 0 Low Risk, Score 1 Medium Risk, Score 2 or more High Risk

Step 5
Management guidelines

- **0 Low Risk**
 Routine clinical care
 - Report screening
 - Hospital – weekly
 - Care Home – monthly
 - Community – annually
 - Special groups: e.g., those >75 yrs

- **1 Medium Risk**
 Observe
 - Document dietary intake for 3 days if subject in hospital or care home
 - If improved or adequate intake – little clinical concern: follow local policy
 - If no improvement – clinical concern: follow local policy
 - Repeat screening
 - Hospital – weekly
 - Care Home – at least monthly
 - Community – at least every 2-3 months

- **2 or more High Risk**
 Treat
 - Refer to dietitian: Nutritional Support Team or implement local policy
 - Improve and increase overall nutritional intake
 - Monitor and review care plan
 - Hospital – weekly
 - Care Home – monthly
 - Community – monthly
 - Unless detrimental or no benefit is expected from nutritional support e.g., imminent death

Obesity:
- Record presence of obesity. For those with underlying conditions, these are generally controlled before the treatment of obesity.

Re-assess subjects identified at risk as they move through care settings
See the MUST Exploratory Booklet for further details and the MUST Report for supporting evidence.
Consider oral nutrition support

- if patient malnourished and/at risk of malnutrition
- and
- can swallow safely and gastrointestinal tract is working
- ensure oral nutrition support contains a balanced mixture of protein, energy, fibre, electrolytes, vitamins and minerals
- stop when the patient is established on adequate oral intake from normal food
Does (mal) nutrition matter?

- Patients who are ill are likely to become malnourished
- The best time to act is early
- Nutritional support gives time for surgical and medical therapies to work